From Scotland to Algeria: Geolocators reveal migration and wintering areas of Ring Ouzel (Turdus torquatus)

Sim, I. M. W., Green, M., Rebecca, G. W. & Burgess, M. D. (2015). Geolocators reveal new insights into Ring Ouzel Turdus torquatus migration routes and non-breeding areas. Bird Study 62: 561–565.  doi: 10.1080/00063657.2015.1077779
PDF in


The first details of the migration pattern of a male Ring Ouzel Turdus torquatus, fitted with a geolocator on its Scottish breeding grounds, showed that it wintered in the Algerian Atlas Mountains, substantially east of the suspected main wintering area.

Ring Ouzel (Turdus torquatus - Merle à plastron - دج مطوق), Algeria

Ring Ouzel (Turdus torquatus – Merle à plastron – دج مطوق), Algeria, November 2015 (photo: Amine Djabari)


From Scotland to Algeria: Ring Ouzel (Turdus torquatus) migration and wintering areas

Median autumn stopover and wintering areas (ellipses) identified from geolocations from an ouzel tracked from Scotland, and recovery locations of British-ringed ouzels. Stopover and winter location ellipses represent the standard deviation of locations around the median point. British-breeding ouzels recovered in autumn (September–November: stars), winter (December–February: open circles) or spring (March–April: upward triangles) are shown alongside non British-breeding ouzels recovered during September–ovember (filled circles).

Wintering and migration routes for Ortolan Buntings from Sweden determined with geolocators

Selstam, G., Sondell, J. & Olsson, P. (2015). Wintering area and migration routes for Ortolan Buntings Emberiza hortulana from Sweden determined with light-geologgers. Ornis Svecica 25: 3–14.
PDF in


The decrease of Ortolan Bunting Emberiza hortulana in Western Europe over the last five decades has caused serious concern for the survival of this species in Sweden. In order to find out the migration routes and wintering location, we equipped several males with geologgers. Our data show annual cycles of migrations routes, wintering grounds and time schedules for seven re-trapped birds. The wintering area in West Africa is savannah woodland in a mountainous landscape in Mali and Guinea. The migration routes follow more or less the great circle between the breeding and wintering areas. Most birds were likely to have passed the well-known Ortolan catching area in les Landes south of Bordeaux in France during autumn migration.

During autumn migration, all the birds made stopovers on the Iberian Peninsula or in Morocco, lasting from 6 to 32 days.

The birds started their spring migration in late March or first half of April. All birds arrived a few days later to stopovers in Morocco or Spain, lasting from 5 to 18 days.

Migration routes for Ortolan Buntings (Emberiza hortulana) between Sweden and sub-Saharan Africa

Migration routes for Ortolan Buntings (Emberiza hortulana) between Sweden and sub-Saharan Africa. Longer stays are indicated with numbers (equalling the number of days spent there). Figures given with regular type represent autumn and bold figures represent spring periods. See the article for more details and other 5 birds.

Etude de la phénologie migratoire des limicoles dans la lagune et les salines de Sidi Moussa, Maroc

Joulami, L., Rguibi Idrissi, H., Bazairi, H., Lopes, R.J. & El Hamoumi, R. 2013. Etude de la phénologie migratoire des limicoles dans la lagune et les salines de Sidi Moussa (Maroc). Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Vie 35: 131-140. PDF


Des dénombrements mensuels des limicoles ont été réalisés de mars 2010 à février 2012 dans la lagune de Sidi Moussa et les salines adjacentes. Au total 24 espèces ont été recensées dont trois espèces nicheuses régulières (Glareola pratincola, Charadrius alexandrinus et Himantopus himantopus). Les espèces les plus abondantes sont Calidris alpina, Charadrius hiaticula, Charadrius alexandrinus, Pluvialis squatarola, Himantopus himantopus et Tringa totanus. L’analyse des patterns migratoires des espèces n’ont pas montré de variations significatives entre les années contrairement à l’évolution des effectifs totaux des limicoles qui enregistrent des variations marquant les différentes saisons du cycle phénologique des espèces. Les effectifs les plus élevés sont notés durant la migration postnuptiale (automne). Ils vont par la suite enregistrer une diminution pour se stabiliser durant la période d’hivernage. Les déplacements prénuptiaux ne sont pas bien décelés. Une légère augmentation des effectifs est notée en février marquant le début de passage de retour. Certaines espèces peuvent laisser sur place de faibles contingents d’estivants. C’est le cas du Bécasseau variable qui montre une forte corrélation avec l’effectif total et du Chevalier gambette avec un début d’estivage précoce (mai). Les deux espèces nicheuses, l’Echasse blanche et le Gravelot à collier interrompu évoluent différemment dans le site. Au moment où la première espèce ne marque aucune variation saisonnière, la deuxième enregistre des passages migratoires notoires pour se stabiliser lors de l’hivernage et de l’estivage. Les effectifs du Pluvier argenté notés en estivage montrent des différences significatives avec ceux notés durant les autres saisons du cycle phénologique, marquées par une certaine stabilité. Pour le Grand Gravelot, les effectifs enregistrés en estivage montrent des différences significatives uniquement avec ceux de la migration postnuptiale.

Study of the migratory waders phenology in the lagoon and salines of Sidi Moussa (Morocco).


Monthly counts of waders were conducted from March 2010 to February 2012 in Sidi Moussa lagoon and adjacent salines. In total 24 species were identified, including three regular breeding species in the site (Glareola pratincola, Charadrius alexandrinus and Himantopus himantopus). The most abundant species are Calidris alpina, Charadrius hiaticula, Charadrius alexandrinus, Pluvialis squatarola, Himantopus himantopus and Tringa totanus. The analysis of migration patterns of the species did not show significant variations between years in contrast to the trends in total numbers of waders that showed marked variations between the different seasons of the annual cycle of the species. The highest numbers are recorded during the autumn passage. Numbers will subsequently decrease and stabilize during the wintering season. Prenuptial movements are not well detected. A slight increase in numbers was noticed in February marking the beginning of the return passage. Some species can leave on the site small flocks of summering individuals. This is the case of Dunlin which shows a strong correlation with the total numbers and the Redshank with an early summering (May). Both breeding species, Black-winged Stilt and the Kentish Plover evolve differently in the site. When no seasonal variation was noted for the first species, migration passages are well marked for the second and numbers stabilize during the wintering and summering. The Grey Plover numbers noted during the summer show significant differences with those recorded during other seasons of the annual cycle, marked by certain stability. For Ringed Plover, numbers recorded in summer showed significant differences only with those of the autumn passage.

Related papers:

El Malki, S., Hanane, S. Joulami, L. & El Hamoumi, R. 2013. Nesting performance of the Black-winged Stilt and Collared Pratincole on a Moroccan coastal wetland: a comparison between natural and artificial habitats. Wader Study Group Bulletin 120 (1): 47–52.

Sidi Moussa lagoon and salines

Sidi Moussa lagoon and salines

The importance of northwest African stopover sites for Dutch, German and Danish Montagu’s Harriers

From 2005 to 2011, 34 adult Montagu’s Harriers (Circus pygargus) were fitted with satellite transmitters in three different subpopulations in northern Europe by the Dutch Montagu’s Harrier Foundation.

This is the first study to describe in great details the migration system of a Palaearctic-African long-distance migrant. The results of this unique long-term and large scale satellite tracking project were recently published in the Proceedings of the Royal Society B:

Trierweiler, C., Klaassen, R. H. G., Drent, R. H., Exo, K.-M., Komdeur, J., Bairlein, F., & Koks, B. J. (2014). Migratory connectivity and population-specific migration routes in a long-distance migratory bird. Proc. R. Soc. B 281: 20132897. doi: 10.1098/rspb.2013.2897 (free access)
PDF also available from the University of Groningen

The study discovered a previously unknown major stopover area in northwest Africa (northeastern Morocco and northern Algeria, figure 3). This area is used extensively both in autumn and spring, predominantly by birds travelling via the western route (i.e. birds from The Netherlands, western Germany and Denmark). In autumn, Montagu’s Harriers made a large number of lengthy stopovers in these northwest African sites. In autumn, 25% of all stopovers were located in northern Africa, whereas in spring 45% of all stopovers were located in this region. Furthermore, in autumn 46% of all individuals made a stopover, whereas in spring 88% of the birds stopped in this region.

This study shows once more that for effective conservation of migratory animals, key stopover sites (where these animals spent a good amount of time both in spring and autumn) need the same attention as the final destinations of the journey (breeding and wintering areas).

A male Montagu’s Harrier (Circus pygargus) is being fitted with a satellite transmitter. Sødernes (DK), July 2011. Picture by Henning Heldbjerg

A male Montagu’s Harrier (Circus pygargus) is being fitted with a satellite transmitter. Sødernes (DK), July 2011. Picture by Henning Heldbjerg

Main stopover sites for Montagu’s Harrier (Circus pygargus), for (a) autumn and (b) spring migration.

Main stopover sites for Montagu’s Harriers (Circus pygargus), for (a) autumn and (b) spring migration.

Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): a review

Panuccio, M., Agostini, N., Mellone, U., & Bogliani, G. (2014). Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): a review. Ethology Ecology & Evolution 26: 1-18.    DOI:10.1080/03949370.2013.812147
PDF in


The nominal subspecies of the Black Kite is a summer resident in Europe and Asia that winters mostly in western Africa, although numbers of birds wintering in the Mediterranean area are increasing. During migrations, tens of thousands are observed migrating through the Strait of Gibraltar between Spain and Morocco, along the eastern side of the Black Sea, and in the Middle East, while substantial numbers cross the central Mediterranean and the Bosphorus. This paper provides a review of research concerning migration and its relationship with foraging behaviour in a circannual perspective. In particular, research made both by satellite tracking and by visual observations suggests a more evident time-selected migration during autumn rather than spring. Moreover, differences in timing occurring among different flyways could be explained either by different rates of intra-specific competition in areas with different breeding density and/or by different distances between wintering and breeding grounds.

Flyways used by Black Kites (Milvus migrans migrans) during autumn migration

Flyways used by Black Kites (Milvus migrans migrans) during autumn migration (see the paper for details)

Help: Recoveries of Spoonbills (Platalea leucorodia) in Africa

As we can see from the map below, it is clearly visible that Tunisia is the most important site for the Spoonbills (Platalea leucorodia) ringed in Hungary, and we have regular observations from Libya, and there are some observations from Morocco and Mauritania, which is rarely visited by Hungarian individuals. We have only old recoveries from Egypt and Sudan, from between 1920-1950, and no data from Algeria or Chad – we suppose there are Spoonbills, but not checked for colour rings. We have only limited data from sub-Saharan Africa, namely from Niger, Nigeria and Mali – we suppose there must be more colour ringed Spoonbills. If you have chance, please try to read the rings of Spoonbills in Africa, and help our project with sending your data for us.

Information about the used systems:

– European Colour-Ring Birding website (the link lists all colour-rings used in Spoonbill in Europe).

– Photo-Guide to Colour-Ringed Birds website (contains photographs of colour-ringed Spoonbills from different European ringing schemes).

Many thanks in advance for your help from Csaba Pigniczki, the coordinator of Hungarian Spoonbill Colour-ringing Project.

Recoveries of Eurasian Spoonbills ringed in Hungary (1908-2013)

Recoveries of Eurasian Spoonbills ringed in Hungary (1908-2013). Map: Hungarian Spoonbill Colour-ringing Project.

Colour-ringing a Eurasian Spoonbill nesting in Hungary

Colour-ringing a Eurasian Spoonbill nesting in Hungary (Photo: Dudás László)

Colour-ringed Eurasian Spoonbills recovered at Lake of Tunis, ZS is a Hungarian bird, the other from Serbia.

Colour-ringed Eurasian Spoonbills recovered at Lake of Tunis, ZS is a Hungarian bird, the other from Serbia. (Photo: Hichem Azafzaf, Association ‘Les Amis des Oiseaux‘ (AAO)

Annual cycle and migration strategies of Great Reed Warbler as revealed by a geolocator study

Lemke HW, Tarka M, Klaassen RHG, Åkesson M, Bensch S, Hasselquist D & Hansson.B. (2013) Annual Cycle and Migration Strategies of a Trans-Saharan Migratory Songbird: A Geolocator Study in the Great Reed Warbler. PLoS ONE 8(10): e79209. doi: 10.1371/journal.pone.0079209


Recent technological advancements now allow us to obtain geographical position data for a wide range of animal movements. Here we used light-level geolocators to study the annual migration cycle in great reed warblers (Acrocephalus arundinaceus), a passerine bird breeding in Eurasia and wintering in sub-Saharan Africa. We were specifically interested in seasonal strategies in routes and schedules of migration. We found that the great reed warblers (all males, no females were included) migrated from the Swedish breeding site in early August. After spending up to three weeks at scattered stopover sites in central to south-eastern Europe, they resumed migration and crossed the Mediterranean Sea and Sahara Desert without lengthy stopovers. They then spread out over a large overwintering area and each bird utilised two (or even three) main wintering sites that were spatially separated by a distinct mid-winter movement. Spring migration initiation date differed widely between individuals (1-27 April). Several males took a more westerly route over the Sahara in spring than in autumn, and in general there were fewer long-distance travels and more frequent shorter stopovers, including one in northern Africa, in spring. The shorter stopovers made spring migration on average faster than autumn migration. There was a strong correlation between the spring departure dates from wintering sites and the arrival dates at the breeding ground. All males had a high migration speed in spring despite large variation in departure dates, indicating a time-minimization strategy to achieve an early arrival at the breeding site; the latter being decisive for high reproductive success in great reed warblers. Our results have important implications for the understanding of long-distance migrants’ ability to predict conditions at distant breeding sites and adapt to rapid environmental change.

Great Reed Warbler Acrocephalus arundinaceus

Great Reed Warbler Acrocephalus arundinaceus (Vitaliy Khustochka on flickr, licence CC-by-nc)

Spatial patterns in North Africa:

The majority of males crossed the Mediterranean Sea and Sahara Desert without stopovers in a flight that exceeded 24 hours in duration, in a geographical window spanning from Tunisia/Algeria in the west to Libya in the east.

In spring, after crossing the Sahara desert, all great reed warbler males stopped just south of the Mediterranean Sea in northeast Algeria and western Tunisia. From the stopover in North Africa most males took off in a north-easterly direction towards Italy and Balkan, which allowed these birds to pass east of the Alps and to return more or less on the same track through Europe as taken in autumn.

A completely unexpected result was that all males spent 1-2 weeks at the end of April or beginning of May in a rather restricted area in north-eastern Algeria and western Tunisia, independent of where along the west–east axis of sub-Saharan Africa they had spent their second part of the winter.

Inferred migration routes, mid-winter movements and stopover sites from geolocator data of male great reed warblers

Inferred migration routes, mid-winter movements and stopover sites from geolocator data of male great reed warblers.
(A) Migration routes and mid-winter movements (blue: autumn; green: spring; yellow: mid-winter).
(B) Stopover sites (stays for more than 36-hours) in autumn (blue) and spring (green), and wintering sites (yellow). Breeding site is indicated (star). Data are for 8 males in autumn and winter, and 6 males in spring. doi:10.1371/journal.pone.0079209.g001

Short‐distance migration of Wrynecks from Central European populations

Wijk, R. E., Schaub, M., Tolkmitt, D., Becker, D. & Hahn, S. 2013. Short-distance migration of Wrynecks Jynx torquilla from Central European populations. Ibis 155 (4): 886–890.  doi: 10.1111/ibi.12083
PDF in


European Wrynecks Jynx torquilla torquilla have generally been considered to be long-distance Palaearctic–African migrants that spend the non-breeding season in Sahelian Africa, where they have been reported regularly. Results from tracking individual birds showed that Wrynecks from two Central European populations migrated only relatively short distances to the Iberian Peninsula and northwestern Africa (c. 1500 km and 3000 km, respectively), compared with a minimum distance of about 4500 km to Sahelian Africa. Additionally, differences in wing lengths of populations from Central and Northern Europe support the idea of leap-frog migration, populations from Northern Europe being long-distance migrants with a non-breeding distribution in Sahelian Africa.

Wryneck (Jynx torquilla)

Wryneck Jynx torquilla (Åsa Berndtss on flickr, license: CC-by)

First evidence of a 200-day non-stop flight in a bird

Liechti, F., Witvliet, W., Weber, R., & Bächler, E. (2013). First evidence of a 200-day non-stop flight in a bird. Nature Communications 4:2554. doi: 10.1038/ncomms3554


Being airborne is considered to be energetically more costly as compared with being on the ground or in water. Birds migrating or foraging while airborne are thought to spend some time resting on the ground or water to recover from these energetically demanding activities. However, for several decades ornithologists have claimed that some swifts may stay airborne for almost their whole lifetime. Here we present the first unequivocal evidence that an individual bird of the Alpine swift (Tachymarptis melba) can stay airborne for migration, foraging and roosting over a period of more than 6 months. To date, such long-lasting locomotive activities had been reported only for animals living in the sea. Even for an aerodynamically optimized bird, like the Alpine swift, flying requires a considerable amount of energy for continuous locomotive control. Our data imply that all vital physiological processes, including sleep, can be perpetuated during flight.

Alpine Swift (Tachymarptis melba)

Alpine Swift (Tachymarptis melba) (Ferran Pestaña on flichr, license: CC-by-sa)

Communiqués de presse de la Station ornithologique suisse (08.10.2013) :

Champion du monde en vol d‘endurance

Nouveau record : le martinet à ventre blanc six mois non-stop dans les airs

Maestro avéré du vol non-stop, le martinet à ventre blanc passe la moitié de l’année dans les airs. L’agile volatile doit son titre à une technique des plus modernes, qui a permis aux chercheurs de la Station ornithologique suisse de prouver ce dont on se doutait depuis longtemps.

Sempach – Les oiseaux aussi se voient obligés de poser « patte » à terre de temps en temps pour se nourrir ou tout simplement se reposer. Les martinets font pourtant exception. Parfaitement adaptés à la vie dans les airs, ces acrobates aériens se nourrissent d’insectes volants qu’ils prélèvent au passage. On se doutait bien qu’ils ne se posaient même pas pour dormir : l’observation au radar de martinets noirs tournant très haut dans le ciel nocturne avait déjà mis la puce à l’oreille des ornithologues.

Une performance désormais confirmée par les chercheurs de la Station ornithologique suisse de Sempach, qui ont prouvé que leur cousin le martinet à ventre blanc est capable de voler en continu pendant plus de six mois. En 2011, les chercheurs ont équipé des martinets à ventre blanc de géolocalisateurs après leur nidification. Développées en collaboration avec la Haute école spécialisée bernoise de Burgdorf, ces petites merveilles technologiques d’environ 1 g permettent de mesurer et d’enregistrer la luminosité de l’endroit où se trouve l’oiseau pendant une année. La longueur du jour, et ainsi la position géographique de l’oiseau, sont ensuite calculées à partir de ces données. Spécialité de cette étude, ces appareils étaient munis d’un capteur d’activité enregistrant et différenciant les phases de battement d’ailes de celles de repos.

Ainsi frétés d’un géolocalisateur, les martinets à ventre blancs prirent la direction de leurs quartiers d’hiver. Après y avoir passé la saison froide, ils réintégrèrent leurs sites de nidification suisses, où les ornithologues les délestèrent de leur petit sac à dos. « L’analyse des données de trois martinets a montré que ces oiseaux passent l’hiver surtout en Afrique de l’Ouest», explique Felix Liechti, responsable du département « migration des oiseaux » à la Station ornithologique et premier auteur de l’étude. « Révolutionnaire est la découverte que ces martinets volent en continu pendant leur migration et dans leur zone d’hivernage »

Ces résultats démontrent que les martinets à ventre blanc sont aussi capables de maintenir toutes leurs fonctions corporelles vitales pendant un vol d’endurance. Ils n’ont pas besoin du même type de sommeil que nous autres humains.

Migration routes and non-breeding range of three Alpine swifts breeding in Switzerland

Les martinets à ventre blancs suisses hivernent en Afrique de l’Ouest. Chaque couleur représente un individu différent. Les surfaces colorées indiquent les zones où les oiseaux ont séjourné un certain temps.
(Foto: © Station ornithologique suisse)

Geolocator (Felix Liechti)

Les géolocalisateurs ont été miniaturisés en continue ces dernières années.
(Foto: © Felix Liechti, Station ornithologique suisse)